Menofia University
Faculty of EngineeringShebien El-kom Basic Engineering Sci. Department. Academic Year : 2016-2017
Date : 31/12 / 2016

Subject : Numerical Analysis Code: BES 601
Time Allowed: 3 hours Year:Master
Total Marks: 100 Marks

Answer all the following questions: [100 Marks]

Q. 1	1) Define briefly each of the following expressions:

Interpolation- Chebyshev norm- Splines- Digital image.
2) Write a Matlab code to find the cubic spline for function $y=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ in the interval $[-3: 3]$.
3) Use the numbers $x_{0}=2 . x_{1}=2.75 . x_{2}=4$ to find the second Lagrange interpolating polynomial for the function $f(x)=\frac{1}{x}$, and use this polynomial to approximate $f(3)$ and $f(3.5)$.Then Write a Matlab code to find this polynomial.
4) Determine an approximate backward difference representation for $\frac{\partial^{3} f}{\partial x^{3}}$ which is of order (Δx), Given evenly spaced grid points $\boldsymbol{f}_{\boldsymbol{i}} \cdot \boldsymbol{f}_{\boldsymbol{i}-\mathbf{1}} \cdot \boldsymbol{f}_{\boldsymbol{i}-\mathbf{2} \cdot} \cdot \boldsymbol{f}_{\boldsymbol{i - 3}}$ by means of:
a) Taylor series expansions.
b) Backward difference recurrence formula.
c) Third degree polynomial passing through the four points.
5) Derive a central difference approximation for $\frac{\partial^{3} f}{\partial x^{3}}$ which is of order $(\Delta x)^{2}$.
6) Use the Matlab environment to generate the Wilkinson's Polynomial and find the following statements:
i) State the command which calculates the root of this polynomial.
ii) State the command which calculates the value of this polynomial at

$$
x=[-1.2, i, N a N, i n f]^{\prime}
$$

| Q. 2 | (A) Consider the following three-dimensional Helmholtz equation in [25] |
| :--- | :--- | the following form:

$$
a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial y^{2}}+\lambda u=F(x, y, z)
$$

with initial conditions:

$$
\begin{array}{ll}
u(0, y)=f_{1}(y), & u_{x}(0, y)=f_{2}(y), \\
u(x, 0)=f_{3}(x), & u_{y}(x, 0)=f_{4}(x)
\end{array}
$$

Where;
$F(x, y), f_{1}(y), f_{2}(y), f_{3}(x), f_{4}(x)$ and a, b, λ are given functions and given constant respectively.
Solve the two-dimensional Schrodinger equation using the differential transform method (DTM), in the following form:

$$
\begin{gathered}
F(x, y, z)=\left(12 x^{2}-3 x^{4}\right) \sin (y) \\
a=b=1, \quad \lambda=-2, \text { and } f_{1}(y)=0, \quad f_{2}(y)=0
\end{gathered}
$$

(B) Consider the following three-dimensional Helmholtz equation in the following form:

$$
a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial y^{2}}+c \frac{\partial^{2} u}{\partial z^{2}}+\lambda u=F(x, y, z)
$$

with initial conditions:

$$
\begin{array}{ll}
u(0, y, z)=f_{1}(y, z), & u_{x}(0, y, z)=f_{2}(y, z) . \\
u(x, 0, z)=f_{3}(x, z), & u_{y}(x, 0, z)=f_{4}(x, z) . \\
u(x, y, 0)=f_{5}(x, y), & u_{z}(x, y, 0)=f_{6}(x, y) .
\end{array}
$$

Where;
$f_{1}(y, z), f_{2}(y, z), f_{3}(y, z), f_{4}(y, z), f_{5}(y, z), f_{6}(y, z) \quad$ and a, b, c, λ are given functions and given constant respectively.

Solve the three-dimensional Helmholtz equation using the differential transform method (DTM), in the following form:

$$
\begin{gathered}
F(x, y, z)=\left(12 x^{2}-4 x^{4}\right) x \sin (y) \cos (x) \\
a=b=c=1, \quad \lambda=-4, \text { and } f_{1}(y, z)=0, \quad f_{2}(y, z)=0
\end{gathered}
$$

(C) Consider the nonlinear singular initial value problem:

$$
y^{\prime \prime}+\frac{2}{x} y^{\prime}+4\left(2 e^{y}+e^{y / 2}\right)=0
$$

with initial conditions:

$$
y(0)=0, \quad y^{\prime}(0)=0
$$

Solve the nonlinear singular initial value problem using the adomian decomposition method (ADM).
(D) Consider the following Riccati equation

$$
y^{\prime}(t)=-(3-y(t))^{2}
$$

with initial conditions:

$$
y(0)=1
$$

Solve the Riccati equation problem using the adomian decomposition method (ADM).
Q. 3 (A) Consider the following non-homogenous differential system:

$$
\begin{gathered}
\frac{d x}{d t}=z-\cos (t) \\
\frac{d y}{d t}=z-e^{t} \\
\frac{d z}{d t}=x-y
\end{gathered}
$$

with initial conditions:

$$
x(0)=0, \quad y(0)=0, \quad z(0)=2
$$

Solve the non-homogenous differential system using the differential transform method (DTM).
(B) Consider the following systems of non-linear differential equations:

$$
\begin{gathered}
\frac{d x}{d t}+\frac{d y}{d t}+x+y=1 \\
\frac{d y}{d t}=2 x+y
\end{gathered}
$$

with initial conditions:

$$
x(0)=0, \quad y(0)=1
$$

Solve the non-linear differential systems using the differential transform method (DTM).
(C) The governing equation of a uniform Bernoulli-Euler beam under pure bending resting on fluid layer under axial force is:
$E I \frac{\partial^{4} \boldsymbol{v}}{\partial x^{4}}+p \frac{\partial^{2} \boldsymbol{v}}{\partial x^{2}}+k_{f} \boldsymbol{v}+F(x, t)=0,0 \leq x \leq L_{e}$.
with boundary conditions (Clamped-Simply supported):
at $x=0, W(x)=\frac{d W(x)}{d x}=0$
at $x=L_{e}, W(x)=\frac{d^{2} W(x)}{d x^{2}}=0$
Solve the Riccati equation problem using the adomian decomposition method (ADM). Then compared the results with exact solutions.
(D) Consider the following Initial value problem equation

$$
\frac{d y}{d t}=t^{3} y^{2}(t)-2 t^{4} y(t)+t^{5}+1
$$

with initial conditions:

$$
y(0)=0 .
$$

Solve the problem using the adomian decomposition method (ADM).

This exam measures the following ILOs								
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c
Knowledge \&understanding skills		Q2-b	Q2-c	Q3-c				
	Q4-b				Intellectual Skills	Professional Skills		

With our best wishes

Dr.Rízk Masoud Dr.Ramzy M. Abumandour

